Refine your search:     
Report No.
 - 
Search Results: Records 1-4 displayed on this page of 4
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Investigation on behavior of a vortical liquid film of a wall-impinging liquid jet in a shallow pool

Horiguchi, Naoki; Yoshida, Hiroyuki; Kaneko, Akiko*; Abe, Yutaka*

Nihon Kikai Gakkai Kanto Shibu Dai-29-Ki Sokai, Koenkai Koen Rombunshu (Internet), 5 Pages, 2023/10

To elucidate the behavior of molten fuels as a liquid jet in a shallow pool, which is assumed in a core meltdown accident of an LWR, and develop the evaluation method, we investigated the behavior of the vortical liquid film of the simulated wall-impinging liquid jet using 3-dimensional interface shape data obtained by the experiment in a liquid-liquid system.

Journal Articles

Verification of fuel assembly bowing analysis model for core deformation reactivity evaluation

Doda, Norihiro; Uwaba, Tomoyuki; Ohgama, Kazuya; Yoshimura, Kazuo; Nemoto, Toshiyuki*; Tanaka, Masaaki; Yamano, Hidemasa

Nihon Kikai Gakkai Kanto Shibu Dai-29-Ki Sokai, Koenkai Koen Rombunshu (Internet), 5 Pages, 2023/03

An evaluation method for reactivity feedback due to core deformation during reactor power increase in sodium-cooled fast reactors is being developed for realistic core design evaluation. In this evaluation method, fuel assembly bowing was modeled with a beam element of the finite element method, and the assembly's pad contact between adjacent assemblies was modeled with a dedicated element which could consider the wrapper tube cross-sectional distortion and the pad stiffness depending on pad contact conditions. This fuel assembly bowing analysis model was verified for thermal bowing of a single assembly and assembly pad contact between adjacent assemblies in a core as past benchmark problems. The calculation results by this model showed good agreement with those of reference solutions of theoretical solutions or results by participating institutions in the benchmark. This study confirmed that the analysis model was able to calculate thermal assembly bowing appropriately.

Oral presentation

Structural mechanics analysis of core support plate deflection for improvement of core deformation reactivity evaluation accuracy

Yoshimura, Kazuo; Doda, Norihiro; Igawa, Kenichi*; Uwaba, Tomoyuki; Tanaka, Masaaki; Nemoto, Toshiyuki*

no journal, , 

A sodium-cooled fast reactor has an inherent safety feature of feedback reactivity. Core deformation reactivity decreases fission power automatically in case of increase of the reactor power due to the negative reactivity according to raise of the core temperature. To improve the evaluation accuracy of the core deformation reactivity, deflection of the core support plate which varies the inclination of fuel assemblies and the pitches among them at the center height of the core and has impact on the reactivity was investigated quantitatively in the high flowrate and low flowrate conditions separately by structural mechanics analyses.

Oral presentation

Development of numerical estimation method for thermal hydraulics in reactor vessel of sodium-cooled fast reactor under decay heat removal operation; Validation practice with decay heat removal test

Tanaka, Masaaki; Miyake, Yasuhiro*; Hamase, Erina; Ezure, Toshiki

no journal, , 

For safety enhancement of sodium-cooled fast reactor, decay heat removal system (DHRS) by using the natural circulation without depending on the pump as the mechanical equipment is recognized as one of the most effective methods. The numerical estimation method which can predict thermal hydraulic phenomena in the reactor vessel during DHRS operation is necessarily required. In this study, the numerical analysis of a sodium test for decay heat removal conducted at the scaled sodium experimental facility named PLANDTL-2 was implemented to validate the RV-CFD model.

4 (Records 1-4 displayed on this page)
  • 1